Ideal decompositions and computation of tensor normal forms

نویسنده

  • Bernd Fiedler
چکیده

Symmetry properties of r-times covariant tensors T can be described by certain linear subspaces W of the group ring K[Sr] of a symmetric group Sr. If for a class of tensors T such a W is known, the elements of the orthogonal subspace W⊥ of W within the dual space K[Sr] of K[Sr] yield linear identities needed for a treatment of the term combination problem for the coordinates of the T . We give the structure of these W for every situation which appears in symbolic tensor calculations by computer. Characterizing idempotents of such W can be determined by means of an ideal decomposition algorithm which works in every semisimple ring up to an isomorphism. Furthermore, we use tools such as the Littlewood-Richardson rule, plethysms and discrete Fourier transforms for Sr to increase the efficience of calculations. All described methods were implemented in a Mathematica package called PERMS. 1. The Term Combination Problem for Tensors The use of computer algebra systems for symbolic calculations with tensor expressions is very important in differential geometry, tensor analysis and general relativity theory. The investigations of this paper are motivated by the following term combination problem or normal form problem which occurs within such calculations. Let us consider real or complex linear combinations

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developing Tensor Operations with an Underlying Group Structure

Tensor computations frequently involve factoring or decomposing a tensor into a sum of rank-1 tensors (CANDECOMP-PARAFAC, HOSVD, etc.). These decompositions are often considered as different higher-order extensions of the matrix SVD. The HOSVD can be described using the n-mode product, which describes multiplication between a higher-order tensor and a matrix. Generalizing this multiplication le...

متن کامل

From Tensor to Coupled Matrix/Tensor Decomposition

Decompositions of higher-order tensors are becoming more and more important in signal processing, data analysis, machine learning, scientific computing, optimization and many other fields. A new trend is the study of coupled matrix/tensor decompositions (i.e., decompositions of multiple matrices and/or tensors that are linked in one or several ways). Applications can be found in various fields ...

متن کامل

Tensor Decompositions with Banded Matrix Factors

The computation of themodel parameters of a Canonical Polyadic Decomposition (CPD), also known as the parallel factor (PARAFAC) or canonical decomposition (CANDECOMP) or CP decomposition, is typically done by resorting to iterative algorithms, e.g. either iterative alternating least squares type or descent methods. In many practical problems involving tensor decompositions such as signal proces...

متن کامل

Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms

In this paper we derive alternating least squares algorithms for the computation of the block term decompositions introduced in Part II. We show that degeneracy can also occur for block term decompositions.

متن کامل

Infinite-dimensional versions of the primary, cyclic and Jordan decompositions

The famous primary and cyclic decomposition theorems along with the tightly related rational and Jordan canonical forms are extended to linear spaces of infinite dimensions with counterexamples showing the scope of extensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره math.CO/0211156  شماره 

صفحات  -

تاریخ انتشار 2001